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Modeling Anuran Detection and Site Occupancy on North American
Amphibian Monitoring Program (NAAMP) Routes in Maryland

LINDA A. WEIR,1 J. ANDREW ROYLE, PRIYA NANJAPPA, AND ROBIN E. JUNG

USGS Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, Maryland 20708, USA

ABSTRACT.—One of the most fundamental problems in monitoring animal populations is that of imperfect

detection. Although imperfect detection can be modeled, studies examining patterns in occurrence often

ignore detection and thus fail to properly partition variation in detection from that of occurrence. In this study,
we used anuran calling survey data collected on North American Amphibian Monitoring Program routes in

eastern Maryland to investigate factors that influence detection probability and site occupancy for 10 anuran

species. In 2002, 17 calling survey routes in eastern Maryland were surveyed to collect environmental and
species data nine or more times. To analyze these data, we developed models incorporating detection

probability and site occupancy. The results suggest that, for more than half of the 10 species, detection

probabilities vary most with season (i.e., day-of-year), air temperature, time, and moon illumination, whereas

site occupancy may vary by the amount of palustrine forested wetland habitat. Our results suggest anuran
calling surveys should document air temperature, time of night, moon illumination, observer skill, and habitat

change over time, as these factors can be important to model-adjusted estimates of site occupancy. Our study

represents the first formal modeling effort aimed at developing an analytic assessment framework for

NAAMP calling survey data.

Most male anuran species in North America
vocalize to attract females for breeding. The
North American Amphibian Monitoring Pro-
gram (NAAMP), initiated in 1997 and patterned
after the North American Breeding Bird Survey
(Robbins et al., 1986; Peterjohn, 1994), is a road-
side calling survey designed to monitor anuran
populations by their vocalizations (Weir and
Mossman, 2005). NAAMP is a collaborative ef-
fort among state natural resource agencies, non-
profit organizations, and the U.S. Geological
Survey (USGS). While USGS provides central
coordination and database management, state
partners recruit and train volunteers to identify
local anurans by their unique vocalizations and
to conduct the calling surveys following the
NAAMP protocol. Since 2001, a unified protocol
has been adopted by 17 states, primarily in the
eastern United States (Weir and Mossman, 2005).
One of the primary objectives of NAAMP is
to determine whether anuran populations are
changing over time at state, regional, and larger
geographic scales.

Following the unified protocol, at each survey
site observers record species presence based on
vocalizations detected and assign a calling in-
dex value from 1, indicating individuals calling
without overlap, to 3, a full chorus (for further
discussion, see Mossman et al., 1998; Weir and
Mossman, 2005). One important difficulty with
this method is the lack of a precise and well-

defined relationship between the calling index
and the abundance of anurans at a sample site
(but see Nelson and Graves, 2004; Stevens and
Paszkowski, 2004). Consequently, no explicit
linkage exists with between-year variation in
calling index data and population change.

To address this dilemma, it is possible to
employ alternative population metrics that can
be estimated from calling survey data and,
therefore, are more appealing for use in a moni-
toring context. One possibility is to shift focus
from calling index data or numbers of individ-
uals in a population to numbers of sample units
occupied by anuran species. Indeed, site occu-
pancy has been identified by the USGS Amphib-
ian Research and Monitoring Intiative (ARMI;
Hall and Langtimm, 2001) as the primary focus
of current monitoring efforts as indicated by the
following statement from the ARMI webpage
(http://armi.usgs.gov/monitoring.asp): ‘‘The
most promising national variable to date is one
based on species presence. Documenting shifts
in species presence through time will provide
important data for assessing changes in amphib-
ian status. The ‘proportion of area occupied’
(PAO) by an amphibian species has been
identified by ARMI as the only metric which so
far meets the Program criteria for being nation-
ally interpretable and regionally adaptable.’’
Anuran occupancy can be estimated based on
detection/nondetection data obtained from rep-
licated visits to multiple sample sites (Geissler
and Fuller, 1986; Bayley and Peterson, 2001;
MacKenzie et al., 2002; Tyre et al., 2003). In1 Corresponding Author. E-mail: lweir@usgs.gov
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addition to being efficient for large-scale moni-
toring efforts, site (or ‘‘patch’’), occupancy is
often viewed as a state variable in metapopula-
tion studies (Hanski, 1992, 1994; Hanski and
Gilpin, 1997). Its utility in a monitoring context
is based on the heuristic notion that site occu-
pancy is related to population size, which can
be established in certain situations (Royle and
Nichols, 2003).

One important benefit of using site occupancy
as a measure of population state is that, under
common sampling designs, these models enable
a formal treatment of detectability. This is impor-
tant because a species might not always be
detected where it is present, yielding a null or
false zero (see Moilanen, 2002), which can be the
result of environmental conditions or other ex-
traneous influences. Many studies that seek to
explain patterns in population change ignore
variation in detection altogether, instead focus-
ing on modeling detection/nondetection data
using various procedures (e.g., logistic regres-
sion; Hames et al., 2002; Reunanen et al., 2002;
Bradford et al., 2003; Fewster, 2003; Knapp et al.,
2003; Sanders et al., 2003) which fail to properly
partition variation in detection from that in
occurrence. Ignoring detectability can lead to
biased estimates of site occupancy (MacKenzie
et al., 2002; Tyre et al., 2003; Gu and Swihart,
2004). It is important to note that this bias is not
constant but can depend on a myriad of factors
that vary from one sampling occasion to the next,
across years, and geographically (Grant et al.,
2005). In anuran surveys, factors that may influ-
ence detectability include environmental condi-
tions (e.g., temperature), observer skill, and noise
disturbance. Consequently, it is critical that the

detection process be modeled so that detection
bias-adjusted estimates of demographic state
variables, such as site occupancy, can yield
accurate comparisons across space and time.

Herein we use data collected on NAAMP
routes in eastern Maryland to investigate factors
that influence anuran detection probability and
site occupancy. Our primary goal is estimation of
baseline ‘‘detection bias-adjusted’’ site occupancy
as a metric for anuran population changes. Our
secondary objective is to develop an analysis
protocol for NAAMP data.

MATERIALS AND METHODS

NAAMP routes used in this study were
previously generated during the initiation of
NAAMP efforts using a stratified random design
with 10 listening stop locations placed at least
0.8 km apart (see Weir and Mossman, 2005). In
Maryland, stop locations were positioned near
potential breeding habitat (e.g., pond, stream,
roadside ditch) but without regard to the initial
presence or absence of calling anurans.

There are 19 anuran species found in Maryland
(Harris, 1975; White and White, 2002). Because
of phenological differences in calling between
eastern and western Maryland, we surveyed 17
routes within eastern Maryland. Sampling win-
dows for eastern Maryland in 2002 were 1–31
March, 15 April to 17 May, and 1–30 June. Of
these 17 routes, five were located in the Northern
Piedmont and 12 were in the Upper Coastal Plain
physiographic regions (Fig. 1) as defined by
Bystrak (1981).

Field Methods.—In a variation on the NAAMP
protocol, where one survey is conducted in each

FIG. 1. North American Amphibian Monitoring Program (NAAMP) routes in the (n) Upper Coastal Plain and
(m) Northern Piedmont physiographic regions of Maryland.
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of three sampling windows (Weir and Mossman,
2005), employees at the USGS Patuxent Wildlife
Research Center, trained by LAW and REJ,
conducted three surveys within each of the three
sampling windows. Each employee thereby
surveyed their own assigned routes a total of
nine times. Additionally, NAAMP volunteers
trained by the Maryland coordinator were in-
dependently conducting single surveys per
sampling window at all routes except one
(460504; Fig. 1), which did not have an assigned
NAAMP volunteer. Three routes (460107, 460508,
and 460704; Fig. 1) had more than one volunteer
assigned. Following the NAAMP unified pro-
tocol (Weir and Mossman, 2005) USGS employ-
ees and NAAMP volunteers began each survey
at least one-half hour past sunset and finished
prior to 0100 h, listening for 5 min at each stop.

We were interested in investigating factors
thought to influence detection probability, and
we considered all parameters currently required
by the NAAMP protocol as those that may
influence detection. To test whether optional
parameters in the NAAMP protocol affected
detection probability, USGS employees recorded
start time of the listening period and the number
of cars that passed at each stop. Any optional
parameters collected by volunteers were also
included in analyses. Two additional covariates
(moonlight, rainfall) that are not part of the
NAAMP protocol were considered as possible
influences on detection probability. Moonlight
data, characterized as the percent of moon
illuminated on each survey night, were obtained
from the U.S. Naval Observatory (available via
http://aa.usno.navy.mil/data/docs/MoonFrac
tion.html) where 0.00 is a new moon, 0.50 is
a first and last quarter moon, and 1.00 is a full
moon. Rainfall data, classified as a binomial
(yes/no) with respect to any measurable rain
within 48 h prior to surveys, were obtained from
weather stations nearest to each route using data
synthesized from the National Weather Service,
the National Oceanic and Atmospheric Admin-
istration, and the National Climatic Data Center
(available via http://www.anythingweather.
com). Finally, we examined one potential in-
teraction, a cloud cover by moon illumination
effect. Ferguson (1960) noted an absence of adult
Bufo fowleri (Fowler’s Toad) on nights with a full
moon and clear skies. Because nocturnal visual
predators may have an advantage on a moonlit,
clear night, anuran calling activity may decrease
on such a night compared to a moonlit but
cloudy night.

Landscape Analysis.—We also considered land-
scape covariates (Table 1) that may contribute to
variation in site occupancy. Prior to conducting
the calling surveys, we confirmed the location of
each stop and recorded latitude and longitude

and estimated position error using a Garmin�
GPS III Plus Personal Navigator� receiver. Based
on these stop coordinates, we calculated the areas
and relative percent composition of land cover
and wetland types within a 1-km buffer around
each survey stop using a geographic information
system (GIS; ArcGIS� V8.2, Environmental
Systems Research Institute, Redlands, CA). We
chose a 1-km buffer to represent a reasonable
area of landscape influence on amphibian meta-
populations (Vos and Stumpel, 1995; Knutson
et al., 1999). Although the home range of most
anurans is less than 1 km2, the dispersal distances
recorded for some species exceed 1 km, such as
Rana catesbeiana (American Bullfrog; Ingram and
Raney, 1943). To spatially analyze site occupancy
using landscape variables, we combined general
land cover data with detailed wetland data. We
obtained 30 m digital raster land cover data
from the USGS National Land Cover Dataset
(NLCD), based on LandSat imagery circa 1992

TABLE 1. Descriptions of Geographic Information
System coverages used to model anuran site occupancy,
the land cover and wetland layers were combined
and evaluated for relative percent composition within
a 1 km radius surrounding each site. Table 3 and
Appendix 1 use the abbreviated codes provided here.

Coverages Type Description Code

National
Land
Cover
Data
(NLCD)
30 m raster
digital data

cultivated � 75% agricultural
(hay pastures,
row-crops,
orchards, etc.) and
recreational
areas (parks,
golf courses, etc.)

AGR

developed � 30% constructed
materials

DEV

natural � 25% tree and/or
shrub canopy cover
as well as sparsely
vegetated areas due
to clear-cuts, fires,
floods, etc.

Maryland
DNR
wetlands

all
estuarine

tidal deepwater
and wetlands with
variable salinity

EST

1:12,000 m
polygon
data

palustrine
emergent

nontidal wetlands
� 8 ha characterized
by primarily rooted,
herbaceous
hydrophytes

PEM

palustrine
forested

nontidal wetlands
� 8 ha characterized
by primarily woody
vegetation

PFO

open water nontidal standing
water characterized
by little or no
vegetative cover, or
channels periodically
or continuously
flowing (palustrine,
lacustrine, and
riverine)

POP
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(currently available from http://seamless.usgs.
gov), and wetland data from the Maryland
Department of Natural Resources (MD DNR) at
1:12,000 scale (downloaded from http://
dnrweb.dnr.state.md.us/gis/data/data.
asp). The MD DNR wetlands layer generally
includes all photo-interpretable wetlands � 0.5
acres (2023 m2), but some wetlands � 3 acres
(12,141 m2) obscured by evergreen forest cover
may have been missed. We generalized both
NLCD land cover classes and MD DNR wetland
classes as described in Table 1.

Model Development.—We modeled detection
probability and site occupancy according to the
methods described by MacKenzie et al. (2002).
A number of factors are thought to influence
both detection probability and site occupancy
(see above). To evaluate these factors, we con-
sidered logit models of the form (for detection
probability):

Eq ð1Þ logitðpitÞ ¼ b0 þ
Xkp

k¼1

bk � ukit

where ukit is the value of (detection) covariate k 5
1,2,. . ., kp for the observation collected at route/
stop i and sampling occasion t. An analogous
model for occupancy was considered:

Eq ð2Þ logitðwiÞ ¼ a0 þ
Xkw

k¼1

ak � vki

where vki is the value of (occupancy) covariate
k 5 1,2,. . .,kw for route/stop i. We assumed that
occupancy status did not change over the course
of the study, that is, that the sites were ‘‘closed’’
with respect to occupancy (for further discussion
of the closure assumption, see MacKenzie et al.
2002). The likelihood of the observed data is
a function of the [pit], [wi] parameters (see
MacKenzie et al., 2002). This likelihood was
maximized to obtain estimates of these model
parameters (Tables 2 and 3).

To allow for the possibility of within-season
variation in detection probability, we incorpo-
rated a sinusoidal function of ‘‘day-of-year’’
specifically, omitting other covariates for clarity:

Eq ð3Þ logitðpitÞ ¼ b0 þ b1� cos
2pt

365
þ b2

� �

where b1 and b2 characterize the amplitude and
phase shift of a sinusoid within a period of 365
days (an annual cycle). This model is essentially
the logistic analog of ‘‘harmonic regression’’
(Bloomfield, 1976) and admits the possibility that
calling activity of anurans is strongly seasonal
and that detection should vary in relation to call-
ing activity. Additional covariates can be added
to this model according to Eq. (1). It is conceivable

that no seasonal variation in detection is dis-
cernable over the course of the study period
given environmental effects such as temperature
and time after sunset. This possibility must be
considered and so the seasonal parameters b1

and b2 were included as a pair in the model
selection described below, thus allowing for their
possible omission from the best-fit model.

Direct interpretation of b0, b1, and b2 under this
model is awkward. The intercept b0 is the base
detection probability (on the logit-scale) at one-
quarter cycle (approximately 91 days) from
the time of the maximum, and b1 and b2 are
the amplitude and phase as stated previously.
Although the interpretation is mathematically
precise, it is more straightforward to interpret
the intercept and sinuosoidal terms together as
implying a baseline detection probability that
varies depending on day-of-year. This can be
depicted graphically given estimates of the three
parameters (Fig. 2). Also, it is convenient to
represent these parameters in terms of two
quantities that are more easily interpreted: the
timing of the peak, tmax, and detection probabil-
ity at the maximum (the amplitude, pmax). These
quantities are below:

Eq ð4Þ tmax ¼
jb2j � 365

2p
and

Eq ð5Þ pmax ¼
eb0þb1

1þ eb0þb1

In addition to those described above, several
other covariates were considered as possible
additive effects on detection probability includ-
ing observer skill, cloud cover, wind conditions,
and the interaction of cloud cover with moon.

Variation among observers is known to be
important in many wildlife studies, such as the
Breeding Bird Survey (Link and Sauer, 1998) and
Christmas Bird Count (Sauer et al., 1994; Link
and Sauer, 1999). Because of the diverse observer
pool in this study, we suspected observer abilities
would be an important source of variation in
detection probability. To simplify the modeling of
observer effects, we did not consider random
effects models used in similar studies (e.g., Link
and Sauer, 1998). Instead, we devised a scoring
system to evaluate observer experience loosely
based on Shirose et al. (1997), in which we clas-
sified observers using three criteria: self rating,
rating by trainer, and other biological experience.
For self and trainer rating we used a 1–3 scale for
beginner, intermediate, and advanced, respec-
tively. Other biological experience was assessed
by asking observers seven questions, such as the
number of years as a NAAMP observer and
whether the person had participated in other
fieldwork either as a volunteer or professional.
Each question was worth one-half point for

630 L. A. WEIR ET AL.



a maximum score of 3.5. These three categorical
scores were averaged to obtain a final numerical
score, which could range from 0.67–3.17. Actual
scores ranged from 0.83–3.0.

In addition to seasonal and observer effects, we
considered the following other factors thought to
influence detection: number of cars passing as an
indicator of noise disturbance, moon illumina-
tion, sky conditions (cloudiness), interaction of
moon and sky conditions, rainfall in preceding
48 h, air temperature, time, and wind speed.
Several of our collected parameters were adjust-
ed. We converted start time to minutes after
sunset. Both wind speed and cloudiness were
recorded as ordered categorical variables. Al-
though wind codes are sequential representing
increasing wind, cloud cover codes representing
increasing levels of cloudiness are sequential
only from 0–2; no data were recorded above this
range. For purposes of model fitting, these were
treated as ordinary regression variables to yield
a more parsimonious description while preserv-
ing the essential quantitative nature of both
variables. For air temperature and time, both
linear and quadratic effects were considered,
allowing for the possibility of ‘‘optimal’’ calling
conditions and hence ‘‘optimal’’ detection.

We also considered additive effects on occu-
pancy by including landscape covariates. These
covariates are compositional (they sum to 1),
inducing an identifiability constraint into the
model, in which the intercept must either be
omitted from the model or one of the covariates
must be removed to ensure that model param-
eters are identifiable. We chose to omit the
‘‘natural’’ category (Table 1). Although this de-
cision does not influence the essential character
of the model, care must be taken when interpret-
ing parameter estimates. Because a particular
parameter estimate is not contained in the model
does not imply that its effect is zero. Omission of
elements of the composition amounts to a re-
duced model in which two or more effects are
equal but not necessarily zero.

Model Selection.—Introducing these six land-
scape effects on occupancy in addition to the 12
detection effects yields a model set of 218 possible
models. Although this has been considerably
reduced by a priori exclusion of some interactions
(i.e., all interactions not previously mentioned),
this still represents a substantial number of
models to consider. Because fitting all possible
models was prohibitive, we adopted a stepwise
model selection procedure under which factors
are added sequentially according to AIC (Burn-
ham and Anderson, 1998). Using the stepwise
procedure, about 140 models were fit for most
species. Because it would be impractical to sum-
marize AIC results for all selected models even for
a single species, we present the top five models
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and factor weights to gauge the overall impor-
tance of each factor for each species. The factor
weight for a particular factor is calculated by sum-
ming up the AIC weight of each model in which
the factor appears (Burnham and Anderson,
1998:140). Factor weights are a means of gauging
the relative importance of many factors. We used
the free software package R, by the R Foundation
for Statistical Computing, for all calculations
(downloaded from http://www.R-project.org).

RESULTS

We present the results for the 10 species that
were observed at . 25% of our survey points
(wobs, Table 3): Bufo americanus (American Toad),
Bufo fowleri (Fowler’s Toad), Hyla chrysoscelis
(Cope’s Gray Treefrog), Hyla versicolor (Gray
Treefrog), Pseudacris crucifer (Spring Peeper),
Pseudacris feriarum (Southeastern Chorus Frog),
Rana catesbeiana (American Bullfrog), Rana clami-
tans (Green Frog), Rana palustris (Pickerel Frog),
and Rana sphenocephala (Southern Leopard Frog).

Generally, the top 10–20 models showed that
detection probability and occupancy only varied
by the inclusion or omission of one or two factors
when compared with the model selected as
‘‘best’’ based on AIC values. Because the model
set was so large the top five models varied little
with respect to AIC values. We present only the
top five models (Appendix 1) and their factor
weights (Tables 2 and 3) for each species.

Detection Factors.—In the top five models for all
species, season explained variation in detection
probability (N 5 10). The season term was
generally the first added in the stepwise pro-
cedure with a factor weight of 1.0 (Table 2).
Because the season term is a sinusoidal function,

we present the results graphically (Fig. 2). The
parameter estimates that describe these detection
probability sinusoids are given in Table 4. For
more direct interpretation, this table also includes
the derived parameters tmax and pmax, which are
functions of b0, b1 and b2.

Air temperature explained the variation in
detection probability for eight of the 10 species.
Of these species, the best models contained
a quadratic temperature (temp2 in Table 2) effect
for five species such that there was a positive
linear coefficient and negative quadratic coeffi-
cient, implying an ‘‘optimal’’ calling tempera-
ture. The expression for optimum temperature
was temp(opt) 5 � a/2b where a is the linear
coefficient and b is the quadratic coefficient. The
models were fit using temperature deviations
from the mean observed temperature during the
study (17.28C), and the units of the estimated
optimum are degrees from the mean. Thus, for
the five species where the best model contained
a quadratic in temperature (Fig. 3), these optimal
temperature values were B. americanus (218C), B.
fowleri (348C), H. versicolor (228C), P. crucifer
(198C), and R. sphenocephala (198C). For the
remaining three species, detection increased as
temperature increased (Table 2).

Time explained the variation in detection
probability for seven of the 10 species (Table 2).
For three of these species, detection had a linear
relationship with time after sunset. The remain-
ing four species had a nonlinear (quadratic)
relationship with time, and detection probabili-
ties for two of these species exhibited a peak
during the time of sampling.

Other factors also contributed to the variation
in detection probability for more than half of the

TABLE 3. Parameter estimates contained in the best model, selected using Akaike’s Information Criterion
(AIC), for factors influencing occupancy including observed (wobs) and modeled (wmodel) occupancy rates. Factor
weights are shown in parentheses. Occupancy variable descriptions provided in Table 1.

Species Intercept AGR DEV EST PEM PFO POP wobs wmodel

Bufo
americanus 12.58 �13.32 (1.00) �37.11 (1.00) �164.84 (1.00) — (0.07) �41.96 (1.00) — (0.08) 0.379 0.603

Bufo fowleri �2.21 — (0.11) — (0.27) — (0.6) — (0.13) 44.82 (1.00) 47.59 (0.99) 0.462 0.524
Hyla

chrysoscelis �1.09 — (0.07) — (0.08) — (0.07) — (0.44) 19.76 (1.00) — (0.33) 0.349 0.486
Hyla

versicolor �0.06 — (0.33) — (0.28) — (0.07) — (0.10) — (0.07) — (0.07) 0.373 0.479
Pseudacris

crucifer 2.49 — (0.10) — (0.05) �13.82 (1.00) — (0.22) 33.18 (1.00) — (0.04) 0.959 0.960
Pseudacris

feriarum �1.70 — (0.06) �9.26 (0.93) — (0.18) 30.91 (0.51) 19.67 (1.00) �31.43 (0.79) 0.308 0.350
Rana

catesbeiana �0.66 — (0.40) — (0.07) — (0.06) — (0.07) 6.49 (1.00) 55.92 (1.00) 0.497 0.533
Rana

clamitans �0.46 1.28 (0.73) — (0.06) �15.38 (1.00) — (0.05) 7.99 (1.00) — (0.08) 0.598 0.625
Rana

palustris �0.65 — (0.13) — (0.41) — (0.09) — (0.25) �4.89 (0.87) — (0.08) 0.254 0.280
Rana

sphenocephala �3.45 — (0.06) 24.93 (1.00) — (0.06) — (0.07) 35.52 (1.00) 65.29 (1.00) 0.260 0.505
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species (Table 2). For example, moon illumination
explained variation in detection probability for
six of 10 species. The interaction between moon
and cloud cover further explained variation in
detection for only two of these species. Observer
ability explained the variation in detection
probability for five of the 10 species, where
detection probability increased with increasing
observer ability. Although the number of cars
that passed during the listening period explained
variation in detection probability for five of 10
species, detection of only three of these decreased

with increased traffic. Wind also explained the
variation in detection for five of 10 species; for
four of these species, detection probability de-
creased as wind increased.

Occupancy Factors.—Observed occupancy
ranged from 0.253 for R. palustris to 0.959 for
P. crucifer (Table 3). Accounting for imperfect
detectability adjusts the observed occupancy to
account for differences in detection probability.
For P. crucifer, the observed and modeled
occupancy were not appreciably different (0.959
vs. 0.960). The difference between modeled and

FIG. 2. Estimated seasonal detection probabilities during the NAAMP sampling period for Maryland (1 March
through 30 June 2002) for 10 anuran species: Bufo americanus (BAME), Bufo fowleri (BFOW), Hyla chrysoscelis
(HCHR), Hyla versicolor (HVER), Pseudacris crucifer (PCRU), Pseudacris feriarum (PFER), Rana catesbeiana (RCAT),
Rana clamitans (RCLA), Rana palustris (RPAL), and Rana sphenocephala (RSPH).
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observed occupancy was greatest for B. ameri-
canus and R. sphenocephala (Table 3).

DISCUSSION

The models we developed accounted for
variation in detection probability caused by
environmental conditions as well as other extra-
neous sampling influences (e.g., variation among
observers) and variation in occupancy caused by
the surrounding landscape. The results of model
selection suggest that, for more than half of the 10
species, detection probabilities vary most with
season (i.e., day-of-year), air temperature, time,
and moon illumination.

Detection Factors.—As expected, we found
substantial seasonal variation in detectability
even within the anuran breeding season.
NAAMP sampling windows focus sampling
during the breeding activity of these species.
The modeling framework that we employed
allows more precise targeting of particular
species or at least adjustment of data collected
at suboptimal times so that the sample period
need not be truncated to ensure closure.

Although none of the best models included all
required NAAMP parameters, based on model
selection, detection of individual species varied
with respect to some combination of all required
covariates. Thus, we believe that the suite of
required covariates should remain unchanged,
but additional covariates may be important to
consider when analyzing NAAMP data. The
modeling framework presented in this paper can
be used to improve NAAMP and other anuran
calling surveys. For example, factors that in-
fluence detection should be considered in survey
design and in the comparison of population state
metrics across space and time.

Air temperature generally explained varia-
tion in detection for seven species; we found

quadratic temperature effects on detection
probability for five of these species (Table 2)
indicating a peak temperature for detection.
Similarly, Johnson and Batie (2001) found that
the greatest proportion of species-specific detec-
tions occurred during optimal temperature
ranges. This information on the effect of ambient
temperature on detection probability can be used
to guide or restrict sampling to yield higher
detection probabilities. Time after sunset ex-
plained the variation in detection probability
for seven species (Table 2), although the effect
was not consistent across all species. Our results
for time effects for these species (except
B. americanus) are generally in agreement with
previous studies showing that detection in-
creases as time after sunset increases (Bishop
et al., 1997; Bridges and Dorcas, 2000). Note that
these studies only considered linear time effects,
whereas in our modeling, we considered the
possibility of quadratic time effects.

Based on model selection, variation in de-
tection for some species may be related to other
factors such as moonlight, observer experience,
extraneous noise (e.g., passing cars), and wind.
Few studies have examined effects of moonlight
on anuran activity (movement: Fitzgerald and
Bider, 1974; calling: Johnson and Batie, 2001).
Model selection suggests that moonlight may
influence detection probability, although the
response may be species-specific and further
study is warranted. Stepwise selection is known
to build overly complex models (Chatfield, 1995)
resulting in risk that some selected factors may
be spurious. Results such as increased detection
with increasing wind for P. feriarum and in-
creased detection of H. versicolor and R. palustris
with increased traffic may represent spurious
effects.

The importance of observer variation in these
types of studies has been previously established
(Sauer et al., 1994; Shirose et al., 1997; Link and
Sauer, 1998, 1999). We accounted for this possible
source of variation in our models by employing an
observer experience-based scoring system. We
did not test interobserver agreement, because
observers were not simultaneously surveying the
same routes. For half of the species, results from
model selection indicate that observer experience
may influence detection probability (Table 3). In
previous studies, establishing species presence
(i.e., detection) was not related to observer expe-
rience (Shirose et al., 1997; Genet and Sargent,
2003). Our modeling framework may be im-
proved by replacing the current observer scoring
system with one that rates observers based on
a test of their ability to correctly identify calls. To
address this need, NAAMP has developed an
online testing tool in which observers will be
evaluated on their ability to identify anuran calls

TABLE 4. Parameter estimates for seasonal influence
on detection probability, including intercept (b0),
amplitude (b1), and phase of the sinusoid (b2). Also
provide are the timing of the peak (tmax) and detection
probability at the maximum (pmax). For all species
season had a factor weight of 1.0.

Species b0 b1 b2 tmax pmax

Bufo americanus �6.61 5.15 �1.71 99 0.19
Bufo fowleri �7.38 4.28 �2.17 126 0.04
Hyla chrysoscelis �7.87 3.85 �2.83 164 0.02
Hyla versicolor �6.24 1.89 �2.80 163 0.01
Pseudacris crucifer �6.22 8.31 �1.39 81 0.89
Pseudacris feriarum 0.10 3.33 0.24 �14 0.97
Rana catesbeiana �7.68 6.55 �2.63 153 0.25
Rana clamitans �9.25 6.52 �2.64 153 0.06
Rana palustris �16.52 16.60 �1.75 102 0.52
Rana sphenocephala �11.86 10.45 �1.77 103 0.20
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from randomly selected audio files (available at
http://www.pwrc.usgs.gov/frogquiz/).

At 248C, we found H. versicolor detection began
to decrease, whereas H. chrysoscelis detection
continued to increase (Fig. 3B). For both species
during vocalization, the number of pulses per
second increases as air temperature increases; at
any given temperature H. chrysoscelis has more
pulses per second than H. versicolor (Gerhardt,
1978). Gerhardt (1978) found the pulses per
second of H. versicolor reach the range of H.
chrysoscelis at 248C. Thus, it is possible that
observers confused the warm-temperature vo-

calization of H. versicolor for the calls of H.
chrysoscelis, potentially confounding our results
for these two species. This suggests the possibil-
ity of false positives and, thus, potentially
violating a fundamental assumption of the
models considered here (i.e., MacKenzie et al.,
2002). To avoid the risk of false positives, these
species could be treated as a complex or data
restricted to low temperature observations. Al-
ternatively, one could employ models that allow
for false positives, which are currently under
development (e.g., J. A. Royle and W. A. Link,
unpubl.).

FIG. 3. On NAAMP routes in Maryland, the estimated detection probabilities with respect to air temperature
for 10 anuran species: Bufo americanus (BAME), Bufo fowleri (BFOW), Hyla chrysoscelis (HCHR), Hyla versicolor
(HVER), Pseudacris crucifer (PCRU), Pseudacris feriarum (PFER), Rana catesbeiana (RCAT), Rana clamitans (RCLA),
Rana palustris (RPAL), and Rana sphenocephala (RSPH).
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Although our results did not consistently show
decreased detection with increased numbers of
passing cars, this type of extraneous noise should
be considered in estimates of detection because it
can lead to biases that vary temporally. Without
such correction, the appearance of negative
population trends could result from lower de-
tection rates caused by increased noise distur-
bance during sampling rather than actual
population change.

Previous studies suggest that calling activity of
some anurans may be related to wind conditions
(Johnson and Batie, 2001; Oseen and Wassersug,
2002). Similarly, we found that detection of four
of five species decreased with increased wind,
although our surveys were confined to the low
wind requirements of the NAAMP unified pro-
tocol (Weir and Mossman, 2005).

Occupancy Factors.—We present detection bias-
adjusted site occupancy as a metric of popula-
tion demographics. Not all species are detected
equally; using detection bias-adjusted site occu-
pancy can account for these differences (Table 3).
In our study, routes were surveyed nine to 15
times allowing naı̈ve estimates of site occupancy
to approach the model-adjusted estimates.
NAAMP routes are surveyed three to four times
per year; we would expect that fewer visits
would increase the difference between naı̈ve
and model-adjusted occupancy. By accounting
for detection bias through modeling, differences
in sampling conditions (e.g., temperature, time,
etc.) during surveys from year-to-year will not
obscure emerging population trends.

The proportion of palustrine forested wetland
habitat surrounding a survey point explained
variation in site occupancy for nine of 10 species.
For seven of these species, occupancy increased
with the prevalence of this habitat. This implies
that these species exhibit a preference (or, for the
remaining two species, a lack of preference) for
palustrine forested habitat, but these species use
several other habitat types for breeding (Hulse
et al., 2001; White and White, 2002). NAAMP
routes are located randomly, stratified by habitat
with stop locations placed at potential breeding
habitat (see Weir and Mossman, 2005). Future
improvements in the resolution of digital land
cover data will allow increased precision of
habitat characterization permitting better inter-
pretation of habitat associations in relation to
population trends (Falardeau and DesGranges,
1991; Bishop et al., 1997).

Conclusions.—NAAMP is a relatively new
monitoring program with the potential to gener-
ate substantial amounts of data on amphibian
distributions and the status of populations.
Consequently, the development of an analysis
framework for NAAMP data is critically impor-
tant. We believe that the site-occupancy model-

ing framework we employed is useful in this
regard because it yields a summary of anuran
metapopulation status (site occupancy) that may
be useful for assessment of temporal and geo-
graphic variation in anuran populations. In
addition, this framework facilitates the evalua-
tion of factors that influence the detectability of
anurans, and such information can be useful in
development or modification of anuran sampling
protocols. For example, our results suggest that
data collected during NAAMP and other anuran
calling surveys should include commonly col-
lected parameters such as air temperature and
time of night (e.g., Bishop et al., 1997; Johnson
and Batie, 2001; Oseen and Wassersug, 2002) but
also moon illumination and observer skill that
are not presently components of the NAAMP
protocol. Also, we demonstrated that seasonal
variation can be accommodated in the model
specification for detection probability; therefore
delineating ‘‘sampling windows’’ may not be
necessary for analyzing NAAMP data. Finally,
our results indicate a strong relationship between
site occupancy and land use for several species;
however, our dataset only includes one year of
data. Because land use patterns across the United
States are undergoing rapid change, document-
ing habitat characteristics of sample locations
over time may improve model-adjusted esti-
mates of site occupancy. Although some possi-
bility exists for extending the types of models
considered here to make direct use of the calling
index data (Royle, 2004; Royle and Link, 2005),
our framework yields a metric of population
state that we believe is useful in monitoring and
conservation assessment, when the goal is to
evaluate change in population state over time
and in relation to change in landscape and other
environmental features.
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APPENDIX 1. For 10 anuran species, the top five models using Akaike’s Information Criterion (AIC). See
variable descriptions in Table 1 and Table 3.

Species
models

Detection factors Occupancy factors

AIC WeightCars Moon MnSky Obs Rain Season Sky Temp Temp2 Time Time2 Wind AGR DEV EST PEM PFO POP

Bufo americanus

1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 692.4 0.234
2 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 693.6 0.074
3 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 693.9 0.052
4 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 694.2 0.039
5 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 694.2 0.037

Bufo fowleri

1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1 948.6 0.181
2 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 949.0 0.121
3 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 949.4 0.082
4 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 949.8 0.058
5 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 949.8 0.054

Hyla chrysoscelis

1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 607.2 0.135
2 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 607.5 0.100
3 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 607.5 0.094
4 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 607.6 0.086
5 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 608.3 0.044

Hyla versicolor

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 723.1 0.161
2 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 723.2 0.140
3 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 723.8 0.081
4 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 724.1 0.059
5 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 724.1 0.058

Pseudacris crucifer

1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1579.3 0.090
2 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1579.7 0.061
3 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1579.7 0.056
4 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1579.8 0.056
5 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1579.8 0.056
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APPENDIX 1. Continued.

Species
models

Detection factors Occupancy factors

AIC WeightCars Moon MnSky Obs Rain Season Sky Temp Temp2 Time Time2 Wind AGR DEV EST PEM PFO POP

Pseudacris feriarum

1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 625.0 0.140
2 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 625.1 0.136
3 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 626.0 0.051
4 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 626.2 0.045
5 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 626.2 0.045

Rana catesbeiana

1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1031.9 0.211
2 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1032.4 0.123
3 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1032.7 0.093
4 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1033.2 0.057
5 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1033.2 0.056

Rana clamitans

1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1196.7 0.089
2 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1196.7 0.086
3 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1197.0 0.065
4 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1197.0 0.064
5 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1197.1 0.061

Rana palustris

1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 537.1 0.061
2 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 537.1 0.061
3 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 537.1 0.060
4 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 537.2 0.058
5 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 537.5 0.042

Rana sphenocephala

1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 490.4 0.193
2 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 490.8 0.132
3 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 491.4 0.072
4 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 491.7 0.054
5 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 491.8 0.051
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